226 research outputs found

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    The persistence of epiphyseal scars in the distal radius in adult individuals

    Get PDF
    The use of radiographic imaging in the estimation of chronological age facilitates the analysis of structures not visible on gross morphological inspection. Following the completion of epiphyseal fusion, a thin radio-opaque band, the epiphyseal scar, may be observed at the locus of the former growth plate. The obliteration of this feature has previously been interpreted as the final stage of skeletal maturation and consequently has been included as a criterion in several methods of age estimation, particularly from the distal radius. Due to the recommendations relating to age estimation in living individuals, accurate assessment of age from the distal radius is of great importance in human identification; however, the validity of the interpretation of the obliteration of the epiphyseal scar as an age-related process has not been tested. A study was undertaken to assess the persistence of epiphyseal scars in adults between 20 and 50 years of age through the assessment of 616 radiographs of left and right distal radii from a cross-sectional population. This study found that 86 % of females and 78 % of males retained some remnant of the epiphyseal scar in the distal radius. The relationships between chronological age, biological sex and the persistence of the epiphyseal scar were not statistically significant. The findings of this study indicate that the epiphyseal scars may persist in adult individuals until at least 50 years of age. No maximum age should therefore be applied to the persistence of an epiphyseal scar in the distal radius

    The Functioning of the Drosophila CPEB Protein Orb Is Regulated by Phosphorylation and Requires Casein Kinase 2 Activity

    Get PDF
    The Orb CPEB protein regulates translation of localized mRNAs in Drosophila ovaries. While there are multiple hypo- and hyperphosphorylated Orb isoforms in wild type ovaries, most are missing in orbF303, which has an amino acid substitution in a buried region of the second RRM domain. Using a proteomics approach we identified a candidate Orb kinase, Casein Kinase 2 (CK2). In addition to being associated with Orb in vivo, we show that ck2 is required for orb functioning in gurken signaling and in the autoregulation of orb mRNA localization and translation. Supporting a role for ck2 in Orb phosphorylation, we find that the phosphorylation pattern is altered when ck2 activity is partially compromised. Finally, we show that the Orb hypophosphorylated isoforms are in slowly sedimenting complexes that contain the translational repressor Bruno, while the hyperphosphorylated isoforms assemble into large complexes that co-sediment with polysomes and contain the Wisp poly(A) polymerase

    Desert Farming Benefits from Microbial Potential in Arid Soils and Promotes Diversity and Plant Health

    Get PDF
    BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt). Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90), and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37%) than in the desert (11%). Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%); disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural soil showed a higher diversity and a better ecosystem function for plant health but a loss of extremophilic bacteria. Interestingly, we detected that indigenous desert microorganisms promoted plant health in desert agro-ecosystems

    Evaluating the Potential Effectiveness of Compensatory Mitigation Strategies for Marine Bycatch

    Get PDF
    Conservationists are continually seeking new strategies to reverse population declines and safeguard against species extinctions. Here we evaluate the potential efficacy of a recently proposed approach to offset a major anthropogenic threat to many marine vertebrates: incidental bycatch in commercial fisheries operations. This new approach, compensatory mitigation for marine bycatch (CMMB), is conceived as a way to replace or reduce mandated restrictions on fishing activities with compensatory activities (e.g., removal of introduced predators from islands) funded by levies placed on fishers. While efforts are underway to bring CMMB into policy discussions, to date there has not been a detailed evaluation of CMMB's potential as a conservation tool, and in particular, a list of necessary and sufficient criteria that CMMB must meet to be an effective conservation strategy. Here we present a list of criteria to assess CMMB that are tied to critical ecological aspects of the species targeted for conservation, the range of possible mitigation activities, and the multi-species impact of fisheries bycatch. We conclude that, overall, CMMB has little potential for benefit and a substantial potential for harm if implemented to solve most fisheries bycatch problems. In particular, CMMB is likely to be effective only when applied to short-lived and highly-fecund species (not the characteristics of most bycatch-impacted species) and to fisheries that take few non-target species, and especially few non-seabird species (not the characteristics of most fisheries). Thus, CMMB appears to have limited application and should only be implemented after rigorous appraisal on a case-specific basis; otherwise it has the potential to accelerate declines of marine species currently threatened by fisheries bycatch

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation

    Cortical histomorphometry of the human humerus during ontogeny

    Get PDF
    Modeling and remodeling are two key determinants of human skeletal growth though little is known about the histomorphometry of cortical bone during ontogeny. In this study we examined the density and geometric properties of primary and secondary osteons (osteon area and diameter, vascular canal area and diameter) in sub-periosteal cortical bone from the human humerus (n=84) between birth and age 18 years. Sections were removed from the anterior midshaft aspect of humeri from skeletons. Age-at-death was reconstructed using standard osteological techniques. Analyses revealed significant correlation between the histomorphometric variables and age. Higher densities of primary osteons occurred between infancy and seven years of age but were almost completely replaced by secondary osteons after 14 years of age. The geometry of primary osteons was less clearly related to age. Secondary osteons were visible after two years of age, and reached their greatest densities in the oldest individuals. Osteon size was positively but weakly influenced by age. Our data implies that modeling and remodeling are age dependent processes that vary markedly from birth to adulthood in the human humerus

    PPAR-γ Ligands Repress TGFβ-Induced Myofibroblast Differentiation by Targeting the PI3K/Akt Pathway: Implications for Therapy of Fibrosis

    Get PDF
    Transforming growth factor beta (TGFβ) induced differentiation of human lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. Although the typical TGFβ signaling pathway involves the Smad family of transcription factors, we have previously reported that peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands inhibit TGFβ-mediated differentiation of human lung fibroblasts to myofibroblasts via a Smad-independent pathway. TGFβ also activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway leading to phosphorylation of AktS473. Here, we report that PPAR-γ ligands, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 15-deoxy-(12,14)-15d-prostaglandin J2 (15d-PGJ2), inhibit human myofibroblast differentiation of normal and idiopathic pulmonary fibrotic (IPF) fibroblasts, by blocking Akt phosphorylation at Ser473 by a PPAR-γ-independent mechanism. The PI3K inhibitor LY294002 and a dominant-negative inactive kinase-domain mutant of Akt both inhibited TGFβ-stimulated myofibroblast differentiation, as determined by Western blotting for α-smooth muscle actin and calponin. Prostaglandin A1 (PGA1), a structural analogue of 15d-PGJ2 with an electrophilic center, also reduced TGFβ-driven phosphorylation of Akt, while CAY10410, another analogue that lacks an electrophilic center, did not; implying that the activity of 15d-PGJ2 and CDDO is dependent on their electrophilic properties. PPAR-γ ligands inhibited TGFβ-induced Akt phosphorylation via both post-translational and post-transcriptional mechanisms. This inhibition is independent of MAPK-p38 and PTEN but is dependent on TGFβ-induced phosphorylation of FAK, a kinase that acts upstream of Akt. Thus, PPAR-γ ligands inhibit TGFβ signaling by affecting two pro-survival pathways that culminate in myofibroblast differentiation. Further studies of PPAR-γ ligands and small electrophilic molecules may lead to a new generation of anti-fibrotic therapeutics

    Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.Work by CB Paris was supported by the National Science Foundation grant NSF-OCE 0550732. Work by M-A Coffroth and SR Thorrold was supported by the National Science Foundation grant NSF-OCE 0424688. Work by TL Shearer was supported by an International Cooperative Biodiversity Group grant R21 TW006662-01 from the Fogarty International Center at the National Institutes of Health
    corecore